Reinforcement Learning of Argumentation Dialogue Policies in Negotiation
نویسندگان
چکیده
We build dialogue system policies for negotiation, and in particular for argumentation. These dialogue policies are designed for negotiation against users of different cultural norms (individualists, collectivists, and altruists). In order to learn these policies we build simulated users (SUs), i.e. models that simulate the behavior of real users, and use Reinforcement Learning (RL). The SUs are trained on a spoken dialogue corpus in a negotiation domain, and then tweaked towards a particular cultural norm using hand-crafted rules. We evaluate the learned policies in a simulation setting. Our results are consistent with our SUs, in other words, the policies learn what they are designed to learn, which shows that RL is a promising technique for learning policies in domains, such as argumentation, that are more complex than standard slot-filling applications.
منابع مشابه
Reinforcement Learning of Two-Issue Negotiation Dialogue Policies
We use hand-crafted simulated negotiators (SNs) to train and evaluate dialogue policies for two-issue negotiation between two agents. These SNs differ in their goals and in the use of strong and weak arguments to persuade their counterparts. They may also make irrational moves, i.e., moves not consistent with their goals, to generate a variety of negotiation patterns. Different versions of thes...
متن کاملLearning Culture-Specific Dialogue Models from Non Culture-Specific Data
We build culture-specific dialogue policies of virtual humans for negotiation and in particular for argumentation and persuasion. In order to do that we use a corpus of non-culture specific dialogues and we build simulated users (SUs), i.e. models that simulate the behavior of real users. Then using these SUs and Reinforcement Learning (RL) we learn negotiation dialogue policies. Furthermore, w...
متن کاملReinforcement Learning of Multi-Issue Negotiation Dialogue Policies
We use reinforcement learning (RL) to learn a multi-issue negotiation dialogue policy. For training and evaluation, we build a hand-crafted agenda-based policy, which serves as the negotiation partner of the RL policy. Both the agendabased and the RL policies are designed to work for a large variety of negotiation settings, and perform well against negotiation partners whose behavior has not be...
متن کاملSingle-Agent vs. Multi-Agent Techniques for Concurrent Reinforcement Learning of Negotiation Dialogue Policies
We use single-agent and multi-agent Reinforcement Learning (RL) for learning dialogue policies in a resource allocation negotiation scenario. Two agents learn concurrently by interacting with each other without any need for simulated users (SUs) to train against or corpora to learn from. In particular, we compare the Qlearning, Policy Hill-Climbing (PHC) and Win or Learn Fast Policy Hill-Climbi...
متن کاملEvaluating Persuasion Strategies and Deep Reinforcement Learning methods for Negotiation Dialogue agents
In this paper we present a comparative evaluation of various negotiation strategies within an online version of the game “Settlers of Catan”. The comparison is based on human subjects playing games against artificial game-playing agents (‘bots’) which implement different negotiation dialogue strategies, using a chat dialogue interface to negotiate trades. Our results suggest that a negotiation ...
متن کامل